In axiomatic set theory, a function f : Ord → Ord is called normal (or a normal function) iff it is continuous (with respect to the order topology) and strictly monotonically increasing. This is equivalent to the following two conditions:
Contents |
A simple normal function is given by f(α) = 1 + α; note however that f(α) = α + 1 is not normal. If β is a fixed ordinal, then the functions f(α) = β + α, f(α) = β × α and f(α) = βα (for β > 1) are all normal.
More important examples of normal functions are given by the aleph numbers which connect ordinal and cardinal numbers, and by the beth numbers .
If f is normal, then for any ordinal α,
Proof: If not, choose γ minimal such that f(γ) < γ. Since f is strictly monotonically increasing, f(f(γ)) < f(γ), contradicting minimality of γ.
Furthermore, for any non-empty set S of ordinals, we have
Proof: "≥" follows from the monotonicity of f and the definition of the supremum. For "≤", set δ = sup S and consider three cases:
Every normal function f has arbitrarily large fixed points; see the fixed-point lemma for normal functions for a proof. One can create a normal function g : Ord → Ord, called the derivative of f, where g(α) is the α-th fixed point of f.[2]